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Abstract

This document presents an algorithm for computing the fluid forcing required to impose
the boundary conditions associate with the turbulent planetary boundary layer near the ice
shelf/ocean interface. The implementation is indended for use in an Immersed Boundary
Method (IBM) implemented in the Parallel Ocean Program (POP), and is intended for use
in the near future in coupling the physics between POP and Glimmer: The Community Ice
Sheet Model (Glimmer-CISM). The analytic solutions for the variation of the velocity and
the active tracer quantities (temperature and salinity) in the boundary layer.

1 Nomenclature

Symbol Description
a = (1/Rc +1/µ∗ξN)(1−η∗)µ∗η∗

aT proportionality between salinity and temperature in linear freezing point relaiton
b(x,y) the (positive) height field representing the ice/ocean interface

bT temperature offset in linear freezing point relaiton
CD non-dimensional drag coefficient
cp,i specific heat capacity of ice
cp,o specific heat capacity of ocean

cT proportionality between pressure and temperature in linear freezing point relaiton
f magnitude of Corilois parameter
g acceleration of gravity

H(x,y) the (positive) depth of the bathymetry below sea level
i =

√
−1

K eddy viscosity
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Symbol Description
Kh turbulent diffusivity of heat
KS turbulent diffusivity of salt

k = 0.4, von Karman’s constant
L = ρ0u3

∗/
[
gk

(
γS

〈
u′zS

′〉
0− γT

〈
u′zT

′〉
0

)]
, Obukhov length

L f latent heat of fusion
n distance from interface (positive into ice)

n0 surface roughness
nbl = −ku∗η∗/ f , edge of the boundary layer
nref reference distance from interface
nsl −u∗η2

∗ξN/ f , edge of the surface layer
p0 pressure at interface (depth dependent)
Rc = 0.2, critical Richardson number
S salinity

S0 salinity at interface
T temperature
T0 temperature at interface
û = (ut −ut,∞)/u∗, complex non-dimensional tangential velocity deviation

û0 complex non-dimensional tangential surface velocity deviation
un normal velocity

un,0 normal velocity at interface, melt rate in ocean
un,0,i melt rate of ice

ut complex tangential velocity
ut,∞ complex tangential velocity outside the boundary layer
u∗ complex surface friction velocity
δ = (±i/kξN)1/2, complex attenuation coefficient

η∗ = (1+ξN µ∗/(Rc f L)1/2, stability parameter
κT

i molecular diffusivity heat in ice
κS

o molecular diffusivity salt in ocean water
κT

o molecular diffusivity heat in ocean water
λ one of {T,S}

µ∗ = u∗/( f L)
ν molecular viscosity of ocean water

ΦT,S non-dimensional change of {T,S} over boundary layer
ΦT,S,ref non-dimensional reference value for change of {T,S}

Φturb non-dimensional change of {T,S} due to turbulence
Φmol

T,S non-dimensional change of {T,S} due to molecular processes
ρi density of ice at interface
ρo density of ocean water at interface
ξN = 0.052, dimensionless universal constant
ζ = f n/u∗η∗, non-dimensional distance from interface (positive into ice)

ζ0 non-dimensional surface roughness
ζref reference non-dimensional distance from interface
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2 Forcing Points in the Immersed Boundary Method

The Immersed Boundary Method (IBM) used to represent the boundary between
the ice shelf and the ocean in the Parallel Ocean Program (POP) can apply forcing
at grid points adjacent to the boundary location that are either just exterior to the
fluid (ghost points) or just interior to the fluid (band points). Though ghost points
have the desirable property that the forcing does not directly modify the fluid in the
“real” portion of the computational domain, but only the “fictitious” portion that
is simulated within the solid body (the ice shelf). Nevertheless, Choi et al. (2007)
opted to use band points when representing a turbulent boundary layer because this
allowed the modification of the flow to closely mimic the so-called “log law” for
mean velocity near the solid boundary. A qualitatively similar boundary layer exists
in the vicinity of the ice shelf/ocean interface. For this reason, I have opted to use
the band point forcing, interior to the “real” fluid domain in my IBM. For each
band point, I first use an interpolation method to compute the value of the fluid
properties at an image point that lies deeper in the fluid (Choi et al., 2007). Then
I interpolate values for the fluid properties at each band point using the image and
boundary values.

3 Tangential velocity boundary layer solution

McPhee (1981) proposed an analytic solution for the mean tangential velocity
(mean in the sense of the Reynolds average) within the turbulent boundary layer
below the ice/ocean interface. The velocity solution is broken into two parts, one
for the sublayer in which the eddy viscosity varies with distance from the interface
and where viscous and roughness effects play a role, and one for the outer layer in
which the eddy viscosity can be considered to be constant. The velocity solution
is represented as a complex number, where the real part is the x component and
the imaginary part is the y component. The non-dimensional form of the solution is
(McPhee, 1981, Eq. (17)):

û =

−iδeδζ ζ ≤−ξN

−iδe−δξN − η∗
k

[
ln |ζ |

ξN
+(δ −a)(ζ +ξN)− a

2δ (ζ 2−ξ 2
N)

]
, ζ >−ξN

, (1)

where k = 0.4 and ξN = 0.052 are universal constants, where δ = (±i/kξN)1/2

(positive in the northern hemisphere, negative in the southern), where û = (ut −
ut,∞)/u∗ and ζ = f n/u∗η∗, and where u∗ is the friction velocity (with magnitude
equal to the square root of the magnitude of the kinematic stress) at the interface,
ut,∞ is the velocity outside the boundary layer, f is the local Coriolis parameter, and
n is the distance from the interface in the direction normal to the interface (negative
into the ocean, so that if the interface is horizontal, n = z, the usual height above
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sea level). The effects of buoyancy are parameterized in terms of L, the Obukhov
length scale, or non-dimensional parameters µ∗, η∗ and a involving this length:

L ≡ ρ0u3
∗

gk
(
γS

〈
u′zS′

〉
0− γT

〈
u′zT ′

〉
0

) , (2)

µ∗ ≡
u∗
f L

, (3)

η∗ ≡
(

1+
ξN µ∗

Rc

)−1/2

, (4)

a ≡
(

1
Rc

+
1

µ∗ξN

)
(1−η∗)µ∗η∗, (5)

where γS and γT are the expansion coefficients for salinity and temperature, respec-
tively, and where Rc ≈ 0.2 is the critical Richardson number. The Reynolds aver-
aged vertical salinity flux

〈
u′zS

′〉
0 and temperature flux

〈
u′zT

′〉
0 will be discussed

in Sec. 4, where methods are given for computing these values in terms of the bulk
fluid properties.

Values for ut,∞ and u∗ can be found from the velocity ut(nref) at some refer-
ence height nref (with corresponding non-dimensional value ζref), and the fact that
ut(n0)= 0, where n0 is the roughness length scale with corresponding non-dimensional
value ζ0:

û(ζref) =
ut(nref)−ut,∞

u∗
= (−iδ )eδζref (6)

û0 =
ut(n0)−ut,∞

u∗

=−
ut,∞

u∗

=
{
−iδe−δξN − η∗

k

[
ln
|ζ0|
ξN

+(δ −a)ξN +
a
2

δξ
2
N)

]}
, (7)

where we take the outer solution for û regardless of the value of ζref in Eq. (6),
and where we have assumed that |ζ0| � ξN in Eq. (7). Wall roughness is more
commonly expressed in terms of a drag coefficient CD, rather than as a roughness
length scale. Eq. (7) is dominated by the term involving ζ0 in most cases, and this is
the only term considered for the so-called quadratic drag formulation. Under these
assumptions, the scalar version of Eq. (7), in the case of neutral buoyancy (η∗ = 1),
reduces to

ut,∞ ≈−u∗
1
k

ln
|ζ0|
ξN

. (8)
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Comparison with the quadratic drag relation,

u2
∗ ≡CDu2

t,∞, (9)

allows us to relate ζ0 to CD:

CD =
(
−1

k
ln
|ζ0|
ξN

)−2

, (10)

ζ0 =−ξNe−k/
√

CD. (11)

3.1 Iterative algorithm

Given values for nref and ut,ref = ut(nref) (and assuming fixed η∗ and a), we need an
algorithm for finding ut,∞ and u∗. A successful iterative algorithm that converges
quickly (typically in less than ten iterations) is the following:

û0 =
{
−iδe−δξN − η∗

k

[
ln
|ζ0|
ξN

+(δ −a)ξN +
a
2

δξ
2
N)

]}
u0

t,∞ = ut,ref

u0
∗ =−

u0
t,∞

û0
for k = 1,2, ...kmax

ζ
k−1
ref =

nref f
η∗|uk−1

∗ |

uk
∗ =−uref

û0

1

1+ iδ
û0

eδζ
k−1
ref

ε =

∣∣uk
∗−uk−1

∗
∣∣∣∣uk

∗
∣∣

if ε < 10−6

kfinal = k
break

end if
end for

ukfinal
t,∞ =−ukfinal

∗ û0

4 Coupled temperature and salinity boundary layer solution

The boundary layer structure of temperature and salinity are similar to those found
in McPhee et al. (1987) and in Holland and Jenkins (1999). The so-called three
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equations, those for freezing temperature of sea water, heat flux and salt flux, must
be simultaneously satisfied at the wall:

T0 = aT S0 +bT + cT p0(z0), (12)

QT
i −QT

o = QT
latent, (13)

QS
i −QS

o = QS
brine, (14)

where z0 is the height (negative below sea level) of the interface. Subscripts i and o
represent ice and ocean properties, respectively, while subscript 0 represents quan-
tities at the interface. Equation (12) is a linearization of the freezing point valid for
salinity in the range 4–40 psu. Equation (13) can be expanded as

−ρicp,iκ
T
i

(Ti−T0)
∆ni

−ρocp,o
〈
u′nT ′〉

0 =−ρoun,0L f , (15)

where ρi and ρo are the densities of ice and ocean water, respectively, at the inter-
face, cp,i and cp,o are the specific heat capacities of ice and ocean water, respec-
tively, L f is the latent heat of fusion, and un,0 is the melt rate in the ocean (related
to the ice melt rate by mass continuity, ρoun,0 = ρiun,0,i). I have assumed that the
temperature flux of ice can be parameterized in terms of its molecular diffusivity,
κT

i , and using some reference temperature Ti = Ti(∆ni) a distance ∆ni above the
ice/ocean interface. Similarly, the equation for salt flux can be reduced to

−ρo
〈
u′nS′

〉
0 =−ρoun,0S0, (16)

where I have assumed that the salinity of the ice shelf is zero for all time (and
therefore that the salt flux into the ice is also zero). This assumption will not be
valid when frazil ice forms under ice shelves, but this process is thought to oc-
cur predominantly outside the ocean boundary layer, with saline ice being driven
upward toward the ice/ocean interface by buoyancy (Holland and Jenkins, 1999).
Therefore, the process of ice formation with nonzero salinity will not be considered
within the boundary layer formulation.

Following McPhee et al. (1987), we can express the Reynolds averaged turbulent
heat and salinity fluxes in terms of diffusion of bulk temperature and salinity normal
to the interface,

〈
u′nT ′〉

0 =
ρi

ρo

cp,i

cp,o

κT
i

∆ni
(Ti−T0)+un,0

L f

cp,o
=−Kh

∂T
∂n

, (17)〈
u′nS′

〉
0 = un,0S0 =−KS

∂S
∂n

, (18)

where Kh and KS are the turbulent plus molecular diffusivities for heat and salin-
ity, respectively, analogous to the eddy viscosity commonly used in closures for
the Reynolds averaged momentum equation. Equations (17) and (18) can be non-
dimensionalized and then integrated from the interface to an arbitrary normal dis-
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tance n to obtain

T (n)−T0

〈u′nT ′〉0 /u∗
= ΦT (n) =

∫ 0

n

u∗dn′

Kh
, (19)

S(n)−S0

〈u′nS′〉0 /u∗
= ΦS(n) =

∫ 0

n

u∗dn′

KS
. (20)

I will assume that T (n) and S(n) have known values Tref and Sref at some reference
distance from the interface nref, as I did for the tangential velocity in Sec. 3, and that
ΦT,S are known at this same reference distance (see below). With this assumption,
I eliminate the unknown quantities T0 and un,0 in Eqs (12), (19) and (20) leaving an
equation in a single unknown, S0, the salinity at the interface:

0 = c2S2
0 + c1S0 + c0, (21)

c2 = aT (d1−1), (22)
c1 = (Tref−bT − cT p0)−d1(Ti−bT − cT p0)+d2, (23)
c0 =−d2Sref, (24)

d1 = ΦT,ref
ρi

ρo

cp,i

cp,o

κT
i

∆niu∗
, (25)

d2 =
ΦT,ref

ΦS,ref

L f

cp,o
. (26)

Equation (21) can be solved using the quadratic formula. If only one real, positive
root exists, I take this to be the solution. Alternative methods for finding S0 may
be required to handle cases where Eq. (21) has either zero or two real, positive
solutions. Once a solution for S0 has been found, values for un,0 and T0 can be
computed from Eqs. (12), (18) and (20)

T0 = aT S0 +bT + cT p0, (27)

un,0 = u∗
(Sref−S0)
ΦS,refS0

. (28)

The remaining task is to specify the functional form for ΦS,T (n). This is accom-
plished as in McPhee (1983) and McPhee et al. (1987) by assuming that the salinity
and heat fluxes fall off linearly from their surface values to zero at the edge of the
boundary layer

〈
u′nλ

′〉 =−K
∂λ

∂n
=

〈
u′nλ

′〉
0

(
1− n

nbl

)
, (29)

nbl =−ku∗η∗/ f , (30)

where λ is one of T or S. The two papers differ slightly on how they assume the
eddy viscosity (assumed to be the same as the turbulent diffusivity for both salinity
and temperature) varies within the surface layer, and therefore how thick the surface
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layer is. McPhee et al. (1987) assumes the eddy viscosity is linear within the surface
layer and constant within the outer layer

K =

−knu∗ n0 > n ≥ nsl,

−knslu∗ nsl > n ≥ nbl,
(31)

nsl =−u∗η2
∗ξN/ f . (32)

With this definition, Eq. (29) can be integrated with respect to n. For n outside the
surface layer, n > nsl,

λ (n)−λ0

〈u′nλ ′〉0 /u∗
=Φturb(n)

=− 1
k

∫ n0

nsl

(
1
n′
− 1

nbl

)
dn′− 1

knsl

∫ nsl

n

(
1− n′

nbl

)
dn′ (33)

In the limit that |n0| � |nsl|, this integral is

Φturb(n) =
1
k

ln
nsl

n0
− 1

k
+

n
knsl

− n2

2knslnbl
. (34)

McPhee et al. (1987) argues that molecular fluxes must also be taken into account

Φ
mol
T,S = b

(u∗n0

ν

)1/2
(

ν

κ
T,S
o

)2/3

, (35)

where ν is the viscosity of ocean water, κT
o and κS

o are the molecular diffusivities
of temperature and salinity, respectively, and where b = 1.57 is a universal constant
found by fit to observations. The total non-dimensional change in temperature and
salinity from the surface to a distance n is the sum of Eqs. (34) and (35),

ΦT,S(n) = Φturb(n)+Φ
mol
T,S . (36)

Since the buoyancy flux is directed vertically upward whereas the surface normal
need not be vertical (though it will, in general, be close to vertical because of the
large horizontal to vertical aspect ratio of the system), it is necessary to specify the
relationship between 〈u′nλ ′〉0 and

〈
u′zλ

′〉
0 (where, again, λ = {T,S}), in order to

compute the Obukhov length, Eq. (2). It seems reasonable to assume that the impact
of buoyancy on the shape of the boundary layer normal to the interface will go to
zero as the interface becomes vertical (L → ∞, µ∗→ 0, η∗→ 1 and a → 0). Since

u′z = u′ · ẑ = u′t t̂ · ẑ +u′nn̂ · ẑ, (37)

this suggests that 〈u′tλ ′〉0 contributes negligibly to the vertical fluxes, so that the
vertical flux of temperature and salinity is〈

u′zλ
′〉

0 =
〈
u′nλ

′〉
0 nz, (38)
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where nz = n̂ · ẑ is the vertical component of the unit normal vector pointing from
the ocean into the ice. Equation Eq. (2) becomes

L =
ρ0u3

∗
gknz (γS 〈u′nS′〉0− γT 〈u′nT ′〉0)

, (39)

where 〈u′nT ′〉0 and 〈u′nS′〉0 are computed from Eqs. (19) and (20), respectively.

Computation of u∗ and u∞ requires knowledge of L, and therefore of T0 and S0.
Since computations of T0 and S0 themselves involve u∗, it is necessary to solve for
all four of these parameters simultaneously using and iterative method, as proposed
in McPhee et al. (1987). The iterative procedure begins by assuming neutral stabil-
ity, giving values for u∗ and u∞ that do not depend on T0 and S0. Using this value
for u0, T0 and S0 can be computed. The results are used to compute a new value of
L, µ∗, η∗ and a. The process is repeated by obtaining new values of u∗ and u∞, and
so on until a convergence criterion is met.

5 Interdependence of values at image points and band points

The picture becomes somewhat more complicated when the boundary layer solu-
tions are applied within the IBM. We do not, in general, know the value of velocity,
temperature or salinity at image points (the same as the values at nref in the previous
sections) independently of their values at the band points. This is because the value
of a property at the image point is found by interpolation from neighboring value,
including those at the band point. Since the value at the band point depends on the
value at the image point, the we must simultaneously solve for both the image and
band values.

The image value is found by interpolation (the linear sum of values at neighboring
points times weights), which may include the band point. In what follows, we will
assume the image point to be at a distance 2n and the band point to be a distance n
from the boundary. Velocity, temperature and salinity at the image point are related
to their respective values at the band point by the relations

ut(2n) =
N−1

∑
j=1

w jut, j +wNut(n), (40)

T (2n) =
N−1

∑
j=1

w jTj +wNT (n), (41)

S(2n) =
N−1

∑
j=1

w jS j +wNS(n), (42)

where the sums are over nearby neighbors that are in the fluid but that are not band

9



points. Making use of Eqs. (6) and (7), where the former is evaluated at nref = 2n
and nref = n, we have

ut,∞ =− û0u∗ (43)

ut(2n) =ut,∞−u∗iδeδ2n f /|u∗|η∗ (44)

ut(n) =ut,∞−u∗iδeδn f /|u∗|η∗ (45)

Equations (40), (43), (44) and (45) can be solved simultaneously using an iterative
scheme similar to the one in Sec. 3.1. The term used to compute uk

∗ in terms of
ζ

k−1
ref is replaced by

uk
∗ =−

∑
N−1
j=1 w jut, j

û0

1

(1−wN)+ iδ
û0

(
eδ2n f /|uk−1

∗ |η∗−wNeδn f /|uk−1
∗ |η∗

) . (46)

Note that, if wN = 0, then the term involving the sum over j is equal to ut(2n) =
ut,ref, and we recover the same term as in Sec. 3.1. In general, wN � 1, so that the
terms involving wN will be small perturbations to the earlier scheme, not expected
to affect its convergence properties.

Incorporating Eqs. (41) and (42) into the solutions for temperature and salinity from
Sec. 4 is a bit messier, but we will see that the result is still a quadratic equation
for S0, the salinity at the interface, whose solution can be used to compute the
melt rate, interface temperature, and temperatures and salinities at the image and
band points. These equations, together with Eqn. (12) for the freezing temperature
and Eqns. (19) and (20) evaluated at nref = 2n and nref = n lead to seven total
equations in the seven unknowns S0, T0, un,0, T (2n), T (n), S(2n) and S(n). The
seven equations can be written as follows

S(2n) =c0 + c1S(n), (47)
T (2n) =c2 + c3T (n), (48)
T (n) =c4 + c5T0 + c6un,0, (49)

T (2n) =c7 + c8T0 + c9un,0, (50)
T0 =c10 + c11S0, (51)

S(n) =c12S0 + c13un,0S0, (52)
S(2n) =c14S0 + c15un,0S0, (53)

where the constants cn are given by

c0 =
N−1

∑
j=1

w jS j, (54)

c1 =wN , (55)
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c2 =
N−1

∑
j=1

w jTj, (56)

c3 =wN , (57)
c4 =b0ΦT (n)Ti, (58)
c5 =1−b0ΦT (n), (59)

c6 =
L f

cp,o
ΦT (n), (60)

c7 =b0ΦT (2n)Ti, (61)
c8 =1−b0ΦT (2n), (62)

c9 =
L f

cp,o
ΦT (2n), (63)

c10 =bT +CT p0, (64)
c11 =aT , (65)
c12 =1, (66)

c13 =
ΦS(n)

u∗
, (67)

c14 =1, (68)

c15 =
ΦS(2n)

u∗
, (69)

and where

b0 =
ρi

ρo

cp,i

cp,o

κT
i

∆niu∗
. (70)

All unknowns except for S0 can be eliminated from Eqs. (47)–(53):

0 = e0 + e1S0 + e2S2
0, (71)

where

e0 =d2d3, (72)
e1 =d2d4−d0d5, (73)
e2 =−d1d5, (74)
d0 =− c2− c3c4− c3c5c10 + c7 + c8c10, (75)
d1 =− c3c5c11 + c8c11, (76)
d2 =− c3c6 + c9, (77)
d3 =− c0, (78)
d4 =− c1c12 + c14, (79)
d5 =− c1c13 + c15. (80)

We solve Eq. (71) using the quadratic formula. If the roots are complex or negative,
an alternative formulation of the problem is required. If one root is positive while
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the other is not, the positive root is the physical solution. For the time being, if
both roots are positive, the smaller root is assumed to be the physically real root.
(We need a more sophisticated method that takes into account whether melting or
freezing is occurring!). Then, the melt rate is given by

un,0 =
−d0−d1S0

d2
(81)

We find T0 using Eq. (51), T (n) using Eq. (49), T (2n) using Eq. (50), S(n) using
Eq. (52), and S(2n) using Eq. (53).

6 Normal velocity boundary condition

The normal component of velocity at the interface is equal to the melt rate of the
ice. This melt rate is generally very small (on the order of tens to hundreds of
meters per year) and can probably be taken to be zero for the purposes of computing
the velocity boundary condition normal to the interface. We compute the normal
component of the velocity at a given band point using linear interpolation between
the boundary value and the value at the image point,

un(n) =
1
2
(un(2n)+un,0). (82)

The total velocity at a band point a distance n from the interface is

u(n) = ut,1(n)t̂1 +ut,2(n)t̂2 +un(n)n̂. (83)

From this expression, the horizontal and vertical velocity components of the veloc-
ity can be computed for band points on the U and T grids, respectively.

A complication is that the velocity must remain divergence free. Since the geome-
try of the interface is specified using a height field (and, therefore, there is only one
boundary intersection per vertical column), we can use the barotropic momentum
and continuity equations to insure that the flow simultaneously remains divergence
free and satisfies the boundary conditions on the vertical velocity. This can be ac-
complished by solving the rigid lid barotropic equations only in the region of “real”
flow, between z =−b and z =−H. The modified version of Eq. (126) from Smith
and Gent (2002), the elliptic equation for the sea surface height ηn+1 (where the
sea surface height can be related to the surface pressure by ps = ρ0gη) is given by

∇ · (H−b)∇η
n+1 =∇ · (H−b)

[
Û

gατ
+∇η

n−1

]
+

wb

gατ
, (84)

where Û is the auxiliary velocity as defined in Eq. (124) of Smith and Gent (2002),
α = 1/3, τ = 2∆t is twice the time step, and where the vertical velocity at the
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interface wb is given by

wb =u(x,y,z =−b(x,y)) · ẑ, (85)

which is computed by linear extrapolation from the nearest ocean grid cell below
z =−b and an image point below that. (This choice of extrapolation produces wb =
un,0 in the case that the interface normal points vertically upward.)
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